Motion Profile

Motion Profile 是一種開環系統,可以客製化機器移動的加加速度,加速度,與速度,以達到順滑且精準的移動。

影片範例:

Trapezoidal Motion Profile

特點:

  • 加速度和減速度(acceleration)固定,不考慮加加速度(jerk)

At acceleration phase:

v=atv = at
x=12at2x = \frac{1}{2} at^2

At decceleration phase:

v=v0atv = v_0 - at
x=x0+vt12at2x = x_0 +vt - \frac{1}{2} at^2

Sigmoid Motion Profile

特點:

  • 設定最大加加速度為常數(jerk),加速度(acceleration)隨加加速度(jerk)變化

At increasing acceleration phase: 0tT10 \le t \le T_1

a1(t)=jta_1(t) = jt
v1(t)=12jt2v_1(t) = \frac{1}{2} jt^2
x1(t)=16jt3x_1(t) = \frac{1}{6} jt^3

At constant acceleration phase: T1tT2T_1 \le t \le T_2

v2(t) = v1(T1)+ amax(tT1)v_{2}\left(t\right)\ =\ v_{1}\left(T_{1}\right)+\ a_{max}\left(t-T_{1}\right)
x2(t)=12amax(tT1)2+v1(T1)(tT1)+16j(T1)3x_2(t) =\frac{1}{2}a_{max}\left(t-T_{1}\right)^{2}+v_{1}\left(T_{1}\right)\left(t-T_{1}\right)+\frac{1}{6}j\left(T_{1}\right)^{3}

At decreasing acceleration phase: T2tT3T_2 \le t \le T_3

a3(t)=a2(T2)j(tT2)a_{3}\left(t\right)=a_{2}\left(T_{2}\right)-j\left(t-T_{2}\right)
v3(t) = v2(T2) 12j(tT2)2+a2(T2)(tT2)v_{3}\left(t\right)\ =\ v_{2}\left(T_{2}\right)-\ \frac{1}{2}j\left(t-T_{2}\right)^{2}+a_{2}\left(T_{2}\right)\cdot\left(t-T_{2}\right)
x3(t)=16j(tT2)3+12a2(T2)(tT2)2+v2(T2)(tT2)+x2(T2)x_3(t)=-\frac{1}{6}j\left(t-T_{2}\right)^{3}+\frac{1}{2}a_{2}\left(T_{2}\right)\cdot\left(t-T_{2}\right)^{2}+v_{2}\left(T_{2}\right)\left(t-T_{2}\right)+x_{2}(T_{2})

At constant velocity phase: T3tT4T_3 \le t \le T_4

x4(t)=v3(T3) (tT3)+x3(T3)x_4(t)=v_{3}\left(T_{3}\right)\ \left(t-T_{3}\right)+x_{3}\left(T_{3}\right)

At increasing deceleration phase: T4tT5T_4 \le t \le T_5

a5(t)=j(tT4)a_{5}\left(t\right)=-j\left(t-T_{4}\right)
v5(t)=v4(t)+a4(t)(tT4)12j(tT4)2v_{5}\left(t\right)=v_{4}\left(t\right)+a_{4}\left(t\right)\left(t-T_{4}\right)-\frac{1}{2}j\left(t-T_{4}\right)^{2}
x5(t)=16j(tT4)3+v4(t)(tT4)+x4(T4)x_5(t)=-\frac{1}{6}j\left(t-T_{4}\right)^{3}+v_{4}\left(t\right)\left(t-T_{4}\right)+x_{4}\left(T_{4}\right)

At constant deceleration phase: T5tT6T_5 \le t \le T_6

v6(t)=amax(tT5)+v5(T5)v_{6}\left(t\right)=-a_{max}\left(t-T_{5}\right)+v_{5}\left(T_{5}\right)
x6(t)=12amax(tT5)2+v5(T5)(tT5)+x5(T5)x_6(t)=-\frac{1}{2}a_{max}\left(t-T_{5}\right)^{2}+v_{5}\left(T_{5}\right)\left(t-T_{5}\right)+x_{5}\left(T_{5}\right)

At decreasing deceleration phase: T6tT7T_6 \le t \le T_7

a7(t)=amax+j(tT6)a_{7}\left(t\right)=-a_{max}+j\left(t-T_{6}\right)
v7(t)=v6(T6)+a6(T6)(tT6)+12j(tT6)2v_{7}\left(t\right)=v_{6}\left(T_{6}\right)+a_{6}\left(T_{6}\right)\cdot\left(t-T_{6}\right)+\frac{1}{2}j\left(t-T_{6}\right)^{2}
x7(t)=16j(tT6)3+12a6(T6)(tT6)2+v6(T6)(tT6)+x6(T6)x_7(t)=\frac{1}{6}j\left(t-T_{6}\right)^{3}+\frac{1}{2}a_{6}\left(T_{6}\right)\left(t-T_{6}\right)^{2}+v_{6}\left(T_{6}\right)\left(t-T_{6}\right)+x_{6}\left(T_{6}\right)

Last updated